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Received IO December 1990 

Abslraet. A new proof of the Kochen-Specker theorem uses 33 rays, instead of 117 in the 
original proof. l f the number of dimensions is increased from 3 to 4. only 24 rays are needed. 

The Kochen-Specker (1967) theorem is of fundamental importance for quantum theory. 
It asserts that, in a Hilbert space of dimension 23,  it is impossible to associate definite 
numerical values, 1 or 0, with every projection operator P,, in  such a way that, if a 
set of commufing P,,, satisfies I P,,, = 1, the corresponding values u(Pm) will also satisfy 
L u(P, )  = 1. The thrust ofthis theorem is that any purported cryptodeterministic theory 
which would attribute a definite result to each quantum measurement, and still repro- 
duce the statistical properties of quantum theory, must necessarily be contexfual. 
Namely, if three operators A, B and C satisfy [A, B ]  = [A, C ]  = 0 and [B, C ]  # 0, the 
res.!! of a meas~remen! of .4 cannot he independent of whether '4 is mezsured z!nne, 
or together with B, or together with C (Bell 1966, Redhead 1987). 

The proof of the theorem runs as  follows. Let U , ,  . . . , uN be a complete set of 
orthonormal vectors. The N matrices P, = U,.: are projection operators on the vectors 
U,. These matrices commute and satisfy L P, = 1. There are N different ways of 
associating the value 1 with one of these matrices (that is, with one of the vectors U,), 
and the value 0 with the N - ! others, Consider now severa! dis!inc! oehogona! bases, 
which may share some of their unit vectors. Assume that if a vector is a member of 
more than one basis, the value (1  or 0) associated with that vector is the same, 
irrespective of the choice of the other basis vectors. This assumption leads to a 
contradiction, as shown by Kochen and Specker (1967) for a particular set of 117 
vectors in R'. An earlier proof by Bell (1966) involved a continuum of vector directions. 
Both proofs were motivated by the Gleason (1957) theorem. 

Although this result has a fundamental importance, its lengthy proof is seldom 
given in textbooks-a notable exception being Redhead (1987). Over the years, there 
were many attempts to reduce the number 117, with meagre results. However, very 
recently, Conway and Kochen (private communication) found a set of 31 vectors 
having the same property. The directions of these vectors are obtained by connecting 
the origin with suitably selected points whose coordinates are small integers. Later in 
this letter, I shall introduce a different set in R', with 33 vectors belonging to 16 distinct 
bases. That set enjoys many symmetries making the proof of the theorem remarkably 
brief. I will then give a similar proof in R4, using only 24 vectors. 

t Bitnet: phr30pef2technion. 
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In these proofs, 1 shall use the word ray, rather than vector, because only directions 
are relevant. The length of the vectors never plays any role, and it is in fact convenient 
to let that length exceed 1. This does not affect orthogonality, and the algebra becomes 
easier. To further simplify the discourse, rays associated with the values 1 and 0 will 
be called green and red, respectively (as in traffic lights, green =yes, red = no). 

The 33 rays are those for which the squares of the direction cosines are one of the 
combinations 

0+0+1  = O + $ + f = o + f + + = i + f + f  (1) 

and all permutations thereof. These rays can be obtained by connecting the origin to 
various points, labelled xyz, where x, y and z can be: 0, I ,  T (this symbol stands for 
- I ) ,  2 (means A), and 3 (means -A). For example the ray 102 connects the origin 
to the point ( - l , O ,  A). The squares of the direction cosines of that ray are f, 0 and 
3. Opposite rays, such as 102 and 103, are counted only once. 

An important property of this set of rays is its invariance under interchanges of 
the x, y and z axes, and under a reversal of the direction of each axis. This allows to 
assign arbitrarily-without loss of generality-values 1 and 0 to some of the rays, 
because any other assignment would be equivalent to renaming the axes, or reversing 
one of them. For example, one can impose that ray 001 is green, while 100 and 010 
are red. 

The proof of the KS theorem entirely holds in table 1. In each line, the first ray, 
printed in boldface characters, is green. The second and third rays form, together with 
the first one, an orthogonal triad. Therefore they are red. Additional rays listed in the 
same line are also Orthogonal to its first ray, therefore they too are red (only the rays 
that will be needed for further work are listed). When a red ray is printed in italic 
characters, this means that it is an 'old' ray, that was already found red in a preceding 
line. The choice of colours for the new rays appearing in each line is explained in the 
table itself. 

Table 1. Proof of KS theorem in three dimensions. 

Orthogonal triad Other rays The first ray is green because of 

001 100 010 
101 io1 010 
011 o i l  100 
i i 2  i 1 2  110 
102 io1 010 
211 O i l  Ill 
201 010 ioz 
112 i i o  iir 
012 100 o n  
121 io1 l j l  

110 i i o  choice of  z axis 
choice of x vs --x 
choice of y vs - y  

orthogonality to second and third rays 
orthogonality to second and third rays 
orthogonality to second and third rays 
orthogonality to second and third rays 
orthogonality to second and third rays 
orthogonality to second and third rays 

IO1 021 choice of x YS y 
I11 
102 
112 
021 
III 
o i 2  

. __ 

The first, fourth and iast lines contain rays 100, 021 and 012, respectively. These 
three rays are red and mutually orthogonal: this is the KS contradiction. It  can be 
shown that if a single ray is deleted from the set of 33, the contradiction disappears. 
It is so even if the deleted ray is not explicitly listed in table 1. This is because the 
removal of one ray breaks the symmetry of the set and therefore necessitates the 
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examination of alternative choices. The proof that a contradiction can then be avoided 
is not quite as simple as table 1. 

The physical interpretation of the KS theorem in R’ is well known. Each P, 
projection operator can be written as 1 - ( m . J ) ‘ ,  where m is a unit vector and J is 
the angular momentum operator for a spin 1 particle. If m and n are orthogonal 
vectors, the operator 

(2) 
has eigenvalues -1, 0 and 1. A direct measurement of that operator is technically 
possible (Swift and Wright 1980) and determines the ‘colours’ of the triad m, n and 
m x n. The 16 different triads correspond to 16 different operators like K, of which 
anyone (but only one) can be actually measured. The results of the other measurements 
are counterfactual-and contradictory. 

With the same notations as above, the 24 rays, labelled wxyz, are 1000, 1100, 1700, 
1111, 111T, Il iT, and all permutations thereof (opposite rays are counted only once). 
This set is invariant under interchanges of the w, x, y and z axes, and under a reversal 
of the direction of each axis. 

Table 2 proves the KS theorem for this case. The conventions are the same as for 
table 1. The first line is obtained by labelling the green axis w ;  the second and third 
lines, by appropriate choices of the directions of the other axes. The green rays in the 
fourth and fifth lines are determined by orthogonality to three red rays. It is then found 
that the first, third and fifth lines contain rays 0110, Olio, 1007 and 1001. These four 
rays are red and mutually orthogonal: again a contradiction. Note that all 24 rays 
appear explicitly in table 2. If a single one is deleted, the contradiction can be avoided. 

K = ( m .  J ) 2 -  (n. J ) 2  

Table 2. Proof of K S  theorem in four dimensions 

Orthogonal tetrad Other rays orthogonal to first one 

io00 0100 0010 0001 0011 ooii 0101 oioi 0110 olio 
1100 iioo ooii ooi i  iiii i i i i  iiii iiii 
1111 iiii i i i i  i i i i  ioio iooi 
ioio i o io  0101 oioi iiii 
i i i i  i i i i  i i i i  i f i f  io01 

There is an important difference between the two set of rays: the 24 rays in R4 
form 6 disjoint orthogonal tetrads. Each ray belongs to a single tetrad. From the four 
projection operators corresponding to each tetrad, one obtains: 

(P, + P2-  P,- P4)(P, - P2+ P, - P4)( P, - P2-  P3+ P4) = 1. (3) 
Each parenthesis in the left hand side is an operator with eigenvalues 1, 1, -1 and 
-1. These three operators are a complete set of commuting operators. The choice of 
the ‘green’ P, determines the values (1  or -1) associated with each one of the three 
operators, and the product of these values is 1. 

The condition for existence of a KS contradiction can now be rephrased in terms 
of these triads of commuting operators, whose product is 1 (or -1). Let a number, 1 
or -1, be associated with each operator, in such a way that the product of these three 
numbers is equal to the product of the operators in each triad. Moreover, let each 
operator belong to several triads, and assume that it has the same value in all the triads 
in which it appears. A contradiction may arise. 
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The simplest way of seeing this is by means of a concrete example. Consider a pair 
of spin-f particles. In the square array 

10uz uzO1 uz 0 uz 

uxQI lQux uxOux (4) 

each row and each column is a triad of commuting operators, as described above. The 
KS contradiction is due to the fact that the product of the three operators in each row 
or column is 1 0  1, except those of the third column, whose product is -1 0 1 (Mermin 
1990). It is obviously impossible to associate numerical values, 1 or + I ,  to each one 
of these nine operators, obeying the same multiplication rule. 

I am grateful to S Kochen and N D Mermin for informing me of their results prior 
to publication. This work was supported by the Gerard Swope Fund and the Fund for 
Encouragement of Research. 
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